RESEARCH SUMMARY
My goal is to apply sustainable synthesis and advanced manufacturing techniques in the development of a new, cost-effective catalyst with superior performance for environmental remediation, utilising nanoporous materials. Through this work, I aim to address pressing global challenges and support the United Nations' Sustainable Development Goals, with a focus on achieving clean energy (Goal 7), reducing plastic waste (Goal 12), and mitigating global warming (Goal 13).
Main Research Areas:
-
Porous materials synthesis and characterisation
-
Synthesis of hierarchical porous materials using green and scalable synthetic approaches
-
Innovative catalyst technologies using functional porous materials
-
Energy conversion and storage using hierarchical porous materials
One of my key scientific contributions was the development of a low-solvent, more environmentally-friendly synthesis route for the production of copper-based MOF catalysts with hierarchical porosity. I have developed a new method using supercritical CO2 (scCO2) as a time- and material-efficient route to MOF synthesis with a high level of control over the crystallization process for accessing tailored material properties. I also made significant intellectual contributions to the development of intelligent scalable synthetic methods to produce additional large pores in defective MOF structures which were shown to be highly beneficial for their catalytic activity. The impact of this approach on heterogeneous catalysis was that these new MOFs with hierarchical porosity delivered an enhanced performance with fast intercalation of reactants into active sites.
Furthermore, my experience in using sustainable synthetic approaches has allowed me to achieve the economical production of nanomaterials. For instance, I have demonstrated the development of nanocomposites with novel heterostructures using cheap resources such as plastic waste and natural halloysite, for example, producing multifunctional AgInS2@MIL-101(Cr) and O-g-C3N4@MIL-53(Fe) materials with enhanced porosity via a facile preparation, Co-Fe-BTC/CN nanocomposite with bimetallic structures via a microwave-assisted hydrothermal method and Ag@AgBr/Al-SBA-15, Ag-g-C3N4@HNT and V2O5/Al-SBA-15 with semiconductor-containing porous structures via a one-pot and green synthetic approach. The novel nanocomposites were shown to improve the activity of visible-light-driven catalysts for the efficient treatment of multiple toxic pollutants in water. This could allow wastes to be transformed into economically valuable materials again and protect wildlife and the environment from further pollution.